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LETTER TO THE EDITOR

On the second-neighbour correlator in 1D XXX quantum
antiferromagnetic spin chain

J Dittrich†§ and V I Inozemtsev‡
† Nuclear Physics Institute, Academy of Sciences of the Czech Republic, CZ-250 68Řěz, Czech
Republic
‡ BLTP, JINR, 141980 Dubna, Russia

Received 3 July 1997

Abstract. We have calculated the energy per site for the ground state of the antiferromagnetic
quantum spin chain with variable range exchangeh(j − k) ∝ sinh2 a sinh−2 a(j − k) in the
framework of the asymptotic Bethe ansatz. By expanding it in powers of e−2a , we have
confirmed the value of the second-neighbour correlator for the model with nearest-neighbour
exchange obtained earlier in the atomic limit of the Hubbard chain.

At present, there are two main approaches in investigations of spin correlations in the
ground state of the quantum Heisenberg antiferromagnet. The first one is connected with
analysis of the representations of quantum groups [1] and gives some universal prescription
of calculation of various correlations via multiple contour integrals. Unfortunately, till now
there are no possibilities to reduce these multiple integrals to known transcendents. The
second approach consists in finding correlators in the form of Fredholm determinants [2].
However, within this approach there is still no way of analytically evaluating these Fredholm
determinants. Asymptotics of spin correlations at large distances between spins has been
obtained in the framework of conformal field theory [3], but this theory cannot give the
values of correlators at finite distances.

The first explicit calculation of the nearest-neighbour spin correlator〈σjσj+1〉 in the
thermodynamic limit has been made by Hulthen [4] with the use of the Bethe ansatz [5].
Since this correlator coincides with the energy per site in the vacuum state of the model,
the problem is equivalent to calculation of this energy for a finite number of lattice sitesN

and taking thermodynamic limitN → ∞. The second-neighbour correlator〈σjσj+2〉 has
been calculated by Takahashi [6] with the use of perturbation theory in the atomic limit of
the half-filled Hubbard model. This result has never been confirmed by any other scheme
of calculations.

In this letter, we perform the explicit calculation of〈σjσj+2〉 using a method which
differs substantially from that of [6]. Namely, we start from the consideration of the
integrable spin chain with variable range exchange and the Hamiltonian [7]

H = 1

2

∑
j 6=k

sinh2 a

sinh2 a(j − k)
σjσk − 1

2
. (1)
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In the nearest-neighbour limita→∞, equation (1) can be decompose into a series

H = 1
2

∑
j

(σjσj+1− 1)+ 1
2e
−2a

∑
j

(σjσj+2− 1)+ o(e−2a). (2)

Hence the ground-state energy per site can be written as

e = 1
2〈σjσj+1− 1〉 + 1

2e−2a〈σjσj+2− 1〉 + o(e−2a) (3)

where〈〉 means the average on the vacuum state of the Hamiltonian (2). Fortunately, in the
first-order approximation (3) this state can be replaced by the vacuum state of nonperturbed
Hamiltonian with the interaction of nearest-neighbour spins,H0 = 1

2

∑
j (σjσj+1− 1).

Let us now calculate the ground-state energy per site (3) of the model with the use of
the asymptotic Bethe ansatz (ABA) [8]. The wavefunctions of the states withM down spins
can be calculated exactly [7]. Their asymptotic expression in the regionn1� n2 . . .� nM
has a form similar to the Bethe expression,

ψ(n1, . . . nM) ∝
∑
P∈πM

exp

(
i
M∑
α=1

kPαnα

)
exp

(
i

2

M∑
α<β

χ(kPα, kPβ)

)
(4)

where the first sum is taken over all permutations from the groupπM , {kα} is the set of
pseudomomenta andχ(kα, kβ) is the two-magnon phase shift defined by the relations

cot
χ(kα, kβ)

2
= ϕ(kα)− ϕ(kβ) (5)

ϕ(k) = k

2π ia
ζ1

(
iπ

2a

)
− 1

2ia
ζ1

(
ik

2a

)
(6)

where ζ1 is the zeta Weierstrass function defined on the torusT1 = C/(Z + iπ
a
Z). To

consider the chains of finite lengthN in the thermodynamic limitN → ∞, we adopt the
main hypothesis of ABA, i.e. imposing periodic boundary conditions on the asymptotic
form of the wavefunction (4) (it is worth noting here that the exact solution of the problem
of finite chains in the model should be based on the treatment of the Hamiltonian with
the exchange given by the Weierstrass℘ function instead of (1), and is not available till
now except for the casesM = 2, 3). Takingψ(n2, . . . nM, n1 + N) = ψ(n1, . . . nM) and
calculating both sides with the use of formula (4) results in the ABA equations

exp(ikαN) = exp

(
i
M∑
β 6=α

χ(kα, kβ)

)
α = 1, . . .M. (7)

The energy of the corresponding configuration is given by

EM =
M∑
α=1

∑
n6=0

sinh2 a

sinh2 an
(cos(kαn)− 1). (8)

We are interested in the antiferromagnetic vacuum of the model and should takeN even,
M = N/2. Taking logarithms of both sides of (7) and choosing the proper branches [9],
one arrives at

Qα

N
= π − kα

2π
− 1

πN

M∑
β 6=α

arctan[ϕ(kα)− ϕ(kβ)]. (9)

We adopt the usual hypothesis about the distribution of the (half)integers{Q} for the
antiferromagnetic vacuum state. Namely, it will be assumed that these numbers form a
uniform string from−Qmax to Qmax, Qmax = N/4 − 1

2 without holes. We introduce
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the rapidity variableλ by the relationλ = ϕ(k) and the functionµ(λ) via the relation
π − k = µ(λ). The ABA equations (9) now can be written as

Qα/N = Z(λα) (10)

where

Z(λ) = (2π)−1µ(λ)− 1

πN

∑
β=1

arctan(λ− λβ).

Following Hulthen [4], let us go to the continuous variablex = Qα/N in the limit N →∞
and introduce the root densityσN(λ) by the relationσN(λ) = dx/dλ. Differentiating both
sides of (10) with respect toλ, one arrives at the Hulthen-like equation in the limitN →∞

σ∞(λ) = (2π)−1µ′(λ)−
∫ ∞
−∞

A(λ− λ′)σ∞(λ′)dλ′ (11)

whereA(λ) = [π(1+ λ2)]−1. The energy per site can be written from (8) as

e∞ = lim
N→∞

N−1EN/2 =
∫ ∞
−∞

ε(k(λ))σ∞(λ) dλ (12)

where

ε(k(λ)) = 2 sinh2 a

∞∑
n=1

cosnk(λ)− 1

sinh2 an
. (13)

The solution to (11) can be found via Fourier transform,

σ∞(λ) = (2π)−2
∫ ∞
−∞

eiλp dp

1+ e−|p|

∫ ∞
−∞

µ′(τ )e−ipτ dτ.

Substituting it into (12) yields

e∞ = (2π)−2
∫ ∞
−∞

dλε(k(λ))
∫ ∞
−∞

dp
eipλ

1+ e−|p|

∫ ∞
−∞

µ′(τ )e−ipτ dτ.

Choosing variablesλ = ϕ(k), µ′(τ ) dτ = −dk′ and changing the order of integration (this
is possible due to the integral overτ vanishing sufficiently fast as|p| → ∞), one arrives
at the main formula

e∞ = −(2π)−2
∫ ∞
−∞

dp

1+ e−|p|

∫ 2π

0
dkε(k)ϕ′(k)eipϕ(k)

∫ 2π

0
dk′ e−ipϕ(k′) (14)

where the functionsε(k) andϕ(k) are determined by (13) and (6). The integrals in (14)
cannot be calculated analytically. However, one can see from (6) and (13) that for largea

ϕ(k) = 1

2
cot

k

2
+ 2e−2a sink + o(e−2a) (15)

ε(k) = 2(cosk − 1)+ 2e−2a(cos 2k − 1)+ o(e−2a). (16)

Substituting (15) and (16) into (14), one can calculate inner integrals up to the order of
e−2a, ∫ 2π

0
dk′ e−ipϕ(k′) = 2π(1− p2e−2a)e−|p/2| + o(e−2a)∫ 2π

0
dk ε(k)ϕ′(k)eipϕ(k) = π(2+ e−2a(8− p2))e−|p/2| + o(e−2a).
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Now, taking into account the formula
∫∞

0
p2 dp
1+ep = 3

2ζ(3), where ζ is the Riemann zeta
function, the two leading terms ofe∞ are calculated. The comparison of (3) and (14) then
gives

〈σjσj+2〉 = 1− 16 ln 2+ 9ζ(3) (17)

which coincides exactly with the expression given by Takahashi [6].
To conclude, we would like to point out that our approach to the calculation of the

correlator is based on the hypothesis of the validity of the ABA and uniform distribution
of the numbersQα for the antiferromagnetic vacuum of the model (1). The approach of
[6] refers to the perturbation theory in the atomic limit of the half-filled Hubbard model
and the integral representation of its ground-state energy in the thermodynamic limit which
is derived under the assumption of a uniform distribution of integers in the Bethe ansatz
equations for the model. Hence both results are not absolutely rigorous from a mathematical
point of view, and their coincidence supports the validity of both approaches. Unfortunately,
neither our method nor the method of Takahashi [6] can be used for the calculations of higher
correlators. It seems that these calculations will be possible if the method is found for the
reduction of multiple integrals in the general formulae of [4]. Until now, there is no method
for this even for the second-neighbour correlator (17).

The work was partly supported by the GACR grant no. 202/96/0218.
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